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Abstract—In this paper, a new iterative pilot-aided algorithm
based on expectation conditional maximization (ECM) for joint
estimation of Wiener phase noise (PHN) and carrier frequency
offset (CFO) in orthogonal frequency division multiplexing
(OFDM) systems is proposed. Next, a new expression for the
hybrid Cramér-Rao lower bound (HCRB) for joint estimation
of PHN and CFO in OFDM systems is derived. Numerical
results show that the proposed estimator outperforms existing
algorithms in terms of mean square error while performing close
to the derived HCRB at moderate PHN variances. Moreover, the
proposed estimator is found to be computationally more efficient
than existing algorithms since it jointly estimates PHN and CFO
in a few iterations.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
powerful multicarrier modulation technique that can increase
the bandwidth efficiency of wireless systems [1]. However,
OFDM systems are very sensitive to imperfect synchroniza-
tion, where phase noise (PHN) and carrier frequency offset
(CFO), caused by instable oscillators and Doppler shift, result
in a common phase error (CPE) and inter-carrier interference
(ICI) at the receiver. Both of these factors can lead to the
degradation of system performance [2]. Therefore, these im-
perfections need to be accurately estimated to mitigate the
resulting CPE and ICI.

Many CFO and PHN estimators are proposed for mitigating
the effects of CPE and ICI, e.g., [3] and [4]. However,
the estimation approach in [3] is based on a small angle
approximation that adversely affects estimation performance.
The approach in [3] is also computationally very complexity
because it requires large matrix inversions [5]. Most recently,
the authors in [4] proposed a new PHN and CFO estimation
based on the expectation-maximization approach. Even though
the estimator in [4] can track the PHN parameters, its perfor-
mance is only verified at signal-to-noise ratio (SNR) of 10 dB,
it requires a large number of iterations, and it is not in closed-
form. More importantly, both [3] and [4] do not provide the
Cramér-Rao lower bound (HCRB) for joint estimation of PHN
and CFO in OFDM systems.

The HCRB is used in many studies to analyze the accuracy
of joint estimation of deterministic and random parameters
[5]–[9]. For example, the Bayesian Cramér-Rao lower bound
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for Brownian PHN estimation while ignoring the effect of
CFO is derived in [6], [7], [9], [10]. Recently, the HCRB
for joint CFO and channel estimation in OFDM systems is
derived in [5], [8]. However, the HCRB for joint PHN and
CFO estimation in OFDM systems is not studied to date.

In this paper, we present a new approach for carrier recovery
in OFDM systems. As such, the contributions of this paper can
be summarized as follows:

• A new expression for the HCRB for joint estimation of
the PHN and CFO in OFDM systems is derived.

• A new iterative pilot-aided algorithm based on the expec-
tation conditional maximization (ECM) for joint estima-
tion of PHN and CFO in OFDM systems is proposed.

• Simulations are carried out to investigate the perfor-
mance of the proposed estimator. These simulation results
demonstrate that the proposed estimator’s performance is
close to the HCRB for moderate PHN variances while
outperforming the algorithm in [3] at medium to high
SNRs

The rest of this paper is organized as follows: Section II
describes the system model, the scenario under consideration,
and the assumptions in this work. Section III derives an
expression for the HCRB for PHN and CFO estimation in
OFDM systems. In Section IV, the proposed estimator is
derived while in Section V simulation results that investigate
the performance of the proposed estimator are presented.
Section VI concludes the paper.

Notations: Superscripts (·)∗, (·)H , and (·)T denote the
conjugate, the conjugate transpose, and the transpose oper-
ators, respectively. Bold face small letters, e.g., x, are used
for vectors, bold face capital alphabets, e.g., X, are used
for matrices, and [X]x,y represents the entry in row x and
column y of X. IX×X , 0X×X , and 1X×X denote the X ×X
identity, all zero, and all 1 matrices, respectively. | · | is the
absolute value operator, |x| denotes the element-wise absolute
value of a vector x, and diag(x) is used to denote a diagonal
matrix, where the diagonal elements are given by vector x.
Ex,y[·] denotes the expectation over x and y, and <{·} and
={·} are the real and imaginary parts of a complex quantity,
respectively. ∇x and 4x

y represent the first and the second-
order partial derivatives operator, i.e., ∇x = [ ∂

∂x1
, · · · , ∂

∂xN
]T

and 4x
y = ∇y ×∇Tx . Finally, ⊗ denotes circular convolution.

II. SIGNAL MODEL

The complex baseband OFDM signal is given by



xn =
1√
N

N−1∑
k=0

dke
j2πkn/N n = 0, 1, . . . , N − 1, (1)

where dk, for k = 1, . . . , N , is the modulated pilot symbol,
xn is the nth sample of the transmitted OFDM symbol, N is
the number of subcarriers, and k denotes the subcarrier index.
At the receiver, the complex baseband received signal, rn, is
given by

rn = ej(θn+2πnε/N)sn + wn, (2)

where sn , hn ⊗ xn is the received OFDM training symbol,
{θn}N−1

n=0 is the discrete-time PHN sequence, ε is the nor-
malized CFO, which is modeled as an unknown deterministic
parameter [5], {hl}L−1

l=0 is the channel impulse response and
L is the channel length. The channel is assumed to be quasi-
static, which is constant and known over the OFDM symbol
duration and changes from symbol to symbol following a com-
plex Gaussian distribution, i.e., hl ∼ CN (µhl

, σ2
hl

). Since the
channel, PHN and CFO can be estimated jointly using pilots
and the algorithm in [3], this paper focuses on PHN and CFO
estimation and proposes ECM based algorithm to improve the
algorithm’s computational complexity (cf. Section IV-C). In
addition, {wn}N−1

n=0 is the complex additive white Gaussian
noise (AWGN) with zero-mean and known variance σ2

w. The
PHN is modeled as a Wiener process, i.e., θn = θn−1 + δn,
∀ n, where δn ∼ N (0, σ2

δ ) is the PHN innovation and σ2
δ is

the variance of the innovation process [11],[12]. The received
signal, r , [r0, r1, . . . , rN−1]T , in matrix form is given by

r = EPFHHd + w, (3)

where
• E , diag([e(j2πε/N)×0, . . . , e(j2πε/N)×(N−1)]T ),
• P , diag([ejθ0 , ejθ1 , . . . , ejθN−1 ]T ),
• F is an N × N DFT matrix, i.e., [F]l,m ,

(1/
√
N)e−j(2πml/N) for m, l = 0, 1, · · · , N − 1,

• H , diag(h) = diag([h0, h1, . . . , hN−1]T ),
• d , [d0, d1, · · · , dN−1]T , and
• w , [w0, . . . ,wN−1]T .

III. DERIVATION OF THE HYBRID CRAMÉR-RAO BOUND

In this section, the HCRB for joint estimation of PHN and
CFO parameters in OFDM systems is derived. Let λ = [θT ε]T

be the vector of hybrid parameters of interest, where θ ,
[θ0, . . . , θN−1]T is a vector of random PHN parameters and ε
is the deterministic CFO parameter. The accuracy of estimating
λ is lower bounded by the HCRB (Ω) as [13]

Er,θ|ε

[
(λ̂(r)− λ)(λ̂(r)− λ)T

]
� Ω. (4)

Let us define B = Ω−1 as the (N + 1) × (N + 1) hybrid
information matrix (HIM), which can be partitioned as

B =

[
B11 b12

b21 b22

]
, (5)

where the N×N matrix B11 and the scalar b22 are the hybrid
information matrix and scalar for the estimation of θ and ε,
respectively. In addition, b12 and b21 are N × 1 and 1 × N
vectors, respectively.

Theorem: The HCRB for joint estimation of PHN and CFO
is given by

Ω =

[
B−1

11 + VN −ϑ−1B−1
11 b12

−ϑ−1bT12B
−1
11 ϑ−1

]
, (6)

where

• ϑ , ξD4 − bT12B
−1
11 b12,

• ξD4 , 2
σ2
w

dHHHFMFHHd,
• VN , ϑ−1B−1

11 b12b
T
12B

−1
11 ,

• b12 = bT21 = 2
σ2
w

dHHHF
√

MUnFHHd,

• B11 = ΞD1 + ΞP1,
• [ΞD1]n,n = 2

σ2
w

dHHHFUnFHHd, and ΞP1 is defined
in Appendix A.

Proof : See Appendix A.

IV. PROPOSED ECM BASED ESTIMATOR

In this section, an ECM based algorithm for joint estimation
of the PHN and CFO is derived. Fig.1 shows the proposed
ECM estimator. As shown in this figure, the algorithm iterates
between the expectation step (E-step) and the maximization
step (M-step). In E-step, Kalman filter is proposed to estimate
the PHN vector θ[i], using the CFO estimate ε̂[i] obtained from
the previous (ith) iteration, while in M-step, a closed-form
estimator is applied to update the CFO estimate ε̂[i+1]. The
proposed ECM algorithm at the ith iteration as follows. For

PHN estimation 

by Kalman filter 

(Eqs. 12 to 16)
x

Nnj i
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Fig. 1. Proposed estimator based on an ECM algorithm

the given problem, let the received data r be and incomplete
data. The complete data is defined as z , [rT θT ]T [5]. The
log likelihood function of the complete data, log p(z; ε), is
given by

log p(z; ε) = C1 +
1

σ2
w

N−1∑
n=0

‖ rn − ej2πεn/Nejθnsn ‖2

+ log p(θ0) +

N−1∑
n=0

log p(θn|θn−1), (7)

where C1 is a constant. The detailed E-step and M-step for
estimating the CFO and PHN are as follows:

E-step: In this step, the received signal rn is first multiplied
by e−j2πε̂

[i]n/N , then the signal yn is used to estimate the PHN
vector, where ε̂[i] is the latest CFO estimate obtained from the
previous iteration. We proposed to use extended Kalman filter
(EKF) during E-step to estimate the PHN samples θ. The PHN
estimation is as follows: The signal yn can be written as

yn = e−j2πnε
[i]/Nrn = ej2πn∆ε/Nejθnsn + w̃n, (8)



where ∆ε , ε− ε[i] and w̃n , wne
−j2πnε[i]/N . The state and

observation equations at time n are given by

θn =θn−1 + δn, (9)

yn =zn + wn = ej2πn∆ε/Nejθnsn + w̃n. (10)

Since the observation equation in (10) is a non-linear function
of the unknown state vector θ, the EKF is used instead. The
EKF uses Taylor series expansion to linearize the non-linear
observation equation in (10) about the current estimates [14].
Thus, the Jacobian of zn is evaluated by computing the first
order partial derivative of zn with respect to θn as

żn =
∂z(∆ε̂[i], θn)

∂θn
|θn=θ̂n|n−1

=jz(∆ε̂[i], θ̂n|n−1) (11)

=jej2πn∆ε̂[i]/Ne
jθ̂

[i]

n|n−1sn,

where ż denotes the Jacobian of z evaluated at θn. The first
and second moments of the state vector at the ith iteration
denoted by θ̂[i]

n|n−1 and M[i]
n|n−1, respectively, are given by

θ̂
[i]
n|n−1 =θ̂

[i]
n−1|n−1, (12)

M[i]
n|n−1 =M[i]

n−1|n−1 + σ2
δ , (13)

Given the observation yn, the Kalman gain Kn, posteriori
state estimate θ̂

[i]
n|n, and the filtering error covariance, M[i]

n|n
are given by

Kn =M[i]
n|n−1ż

∗(ε̂[i], θn|n−1)
(
ż(∆ε̂[i], θn|n−1)M[i]

n−1|n−1

× ż∗(ε̂[i], θn|n−1) + σ2
w

)−1
, (14)

θ̂
[i]
n|n =θ̂

[i]
n|n−1 + <

{
Kn
(
yn − ej2πn∆ε̂[i]/Ne

jθ̂
[i]

n|n−1sn
)}
,

(15)

M[i]
n|n =<

{
M[i]
n|n−1 − Knż(∆ε̂[i], θn|n−1)M[i]

n|n−1

}
, (16)

Before starting the EKF recursion (11)-(16), θ̂[0]
1|0 and M[0]

1|0 are

initialized by θ̂[0]
1|0 = 0 and M[0]

1|0 = σ2
δ .

M-step: By minimizing the likelihood function in (7), the
CFO estimate update, ε̂[i+1], in M-step is given by

ε̂[i+1] = arg min
ε

N−1∑
n=0

‖ rn−ej2πεn/Nejθnsn ‖2
∣∣
θn=θ̂

[i]
n

(17)

After simplifying (17), we have

ε̂[i+1] = arg max
ε

N−1∑
n=0

<{(rn)∗S[i]
n e

j2πεn/N} (18)

where S[i]
n = ejθ

[i]
n sn. The Taylor series expansion of ej2πεn/N

around the pervious CFO estimate, ε̂[i], up to the second order
term is given by

ej2πεn/N =ej2πε̂
[i]n/N + (ε− ε̂[i])(j 2π

N
n)ej2πε̂

[i]n/N

+
1

2
(ε− ε̂[i])2(j

2π

N
n)2ej2πε̂

[i]n/N (19)

Substituting (19) into (18), ε̂[i+1] is given by

ε̂[i+1] = arg max
ε

{N−1∑
n=0

<
{

(rn)∗S[i]
n e

j2πε̂[i]n/N (20)

+ (ε− ε̂[i])
N−1∑
n=0

<
{

(rn)∗S[i]
n (j

2π

N
n)ej2πε̂

[i]n/N
}

+
1

2
(ε− ε̂[i])2

N−1∑
n=0

<
{

(rn)∗S[i]
n (j

2π

N
n)2ej2πε̂

[i]n/N
}}

Taking the derivative of (20) with respect to ε and equating
the result to zero, the estimate of ε at the (i+1)th iteration is
given by:

ε̂[i+1] = ε̂[i] +
N

2π

∑N−1
n=0 n=

{
(rn)∗S

[i]
n ej2πε̂

[i]n/N
}∑N−1

n=0 n
2<
{

(rn)∗S
[i]
n ej2πε̂

[i]n/N
} , (21)

Using (15) and (21), the proposed algorithm iteratively updates
the PHN and CFO estimates in E-step and M-step of the
algorithm, respectively, and stops when the difference between
likelihood functions of two iterations is smaller than a thresh-
old ζ, i.e.,∣∣∣∣∣

N−1∑
n=0

∥∥∥rn − ej2πε̂[i+1]n/Nejθ̂
[i+1]
n sn

∥∥∥2

−
N−1∑
n=0

∥∥∥rn − ej2πε̂[i]n/Nejθ̂[i]n sn

∥∥∥2
∣∣∣∣∣ ≤ ζ. (22)

It has been found through simulations that: 1) The appro-
priate initialization of CFO, i.e., ε̂[0] can help the proposed es-
timator to estimate the CFO and PHN parameters . The initial
estimate of CFO may be obtained using alternating projection
via likelihood function,

∑N−1
n=0 ‖ rn − ej2πε̂n/Nsn ‖2 using

a coarse step size 10−2. 2) The proposed estimator always
converges to true estimates. For example, at SNR = 20
dB the estimator stops only after 2 iterations, on average.
This demonstrates the efficiency of our proposed estimator
compared to [4], which require 150 iterations for convergence.

A. Complexity of the proposed estimators

In this section, the computational complexity of the pro-
posed estimator and the algorithm in [3] are compared against
one another based on CPU execution time [15]. The execution
time is observed at an SNR of 20 dB while using an Intel Core
7 Quad 3.4 GHz processer with 8 GB of RAM. The execution
time for the proposed estimator and the algorithm in [3]
are determined to be 0.0025 and 1.498 seconds, respectively.
These results show that compared to the approach in [3],
the proposed estimator is capable of estimating the desired
parameters approximately 600 times quicker.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed estimator
is compared with the HCRB and MAP estimator. A Rayleigh
multipath fading channel with a delay of L = 4 taps and an
exponentially decreasing power delay profile is assumed. A
training symbol size of N = 64 subcarriers is used, where sub-
carrier are modulated using binary phase-shift keying (BPSK)
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Fig. 3. MSE for the proposed and MAP estimators for phase noise
variance, σ2

δ = [10−3, 10−4] rad2.

scheme. The Wiener PHN is generated with different PHN
variances, e.g. σ2

δ = [10−3, 10−4] rad2. For each simulation,
the CFO is randomly picked from the range ε ∈ (−0.5, 0.5).

Figs. 2 and 3 plot the HCRB and MSE for estimating
PHN and CFO, respectively, using both the proposed and
MAP estimation algorithms versus SNR. The results lead to
the following observations: 1) The HCRB and the proposed
estimator’s MSE are dependent on the variance of the PHN
process and are lower for a lower PHN variance. 2) Figs. 2
and 3 show that CFO and PHN estimation performances suffer
from an error floor, which is directly related to the variance of
the PHN process. This follows from the fact that at low SNR
the performance of the system is dominated by AWGN, while
at high SNR the performance of the proposed estimator is
limited by PHN and the resulting ICI. 3) It can be clearly ob-
served that the proposed estimator outperforms the algorithms
in [3] at moderate PHN variances, e.g., σ2

δ = 10−4rad2. This
performance improvement can be attributed to the fact that
the proposed joint PHN and CFO estimator does not apply a
small angle approximation to obtain the CFO estimates unlike
the approach in [3]. However, for large PHN variances, e.g.,
σ2
δ = 10−3rad2, we note that that the proposed estimator is

slightly outperformed by the approach in [3]. This can be
attributed to the sensitivity of the proposed ECM estimator to
the initial PHN values, whereas the PHN variance increases the
initialization error also increases. Consequently, the proposed
estimator’s performance degrades slightly. 4) The MSE of the
proposed estimator and the approach in [16] are lower than the
HCRB at lower SNR. This is due to the fact that the HCRB
cannot be derived in closed-form while taking into account
the range of CFO values, i.e., (−0.5, 0.5). Thus, the HCRB is
higher than the MSE of the proposed estimator at lower SNR.

VI. CONCLUSION

This paper derives a new expression for the HCRB for
joint estimation of CFO and PHN. A new iterative estimator
that jointly estimates CFO and PHN parameters in OFDM

Note that a similar estimator is also used in [16].

systems has been proposed. The proposed estimator is shown
to be computationally less complex to implement than existing
algorithms while outperforming existing algorithms for mod-
erate PHN variances. Simulation results show on average a 10
dB estimation performance gain compared to the algorithm
in [3], [16]. More importantly, simulations indicate that the
performance of the proposed estimator is close to the BCRB
at moderate to high SNRs.

APPENDIX A
DERIVATION OF THE HCRB

The HIM B can be written as [13]

B = ΞD + ΞP , (A.1)

where ΞD , Eθ [Ψ(θ, ε)] with Ψ(θ, ε) ,
Er|θ,ε

[
−∆λ

λ log p(r|θ, ε)|ε
]

denoting the Fisher’s information
matrix (FIM) and ΞP , Eθ|ε

[
−∆λ

λ log p(θ|ε)|ε
]

is the prior
information matrix with p(θ|ε) denoting the prior distribution
of PHN vector given the CFO. Thus, in this section we first
obtain an expression for matrices ΞD and ΞP

A. Computation of ΞD , Eθ [Ψ(θ, ε)]

We partition the matrix Ψ(θ, ε) as

Ψ(θ, ε) =

[
Ψ11(θ, ε) ψ12(θ, ε)
ψ21(θ, ε) ψ22(θ, ε)

]
, (A.2)

where

Ψ11(θ, ε) , Er|θ,ε
[
−∆θ

θ log p(r|θ, ε)|ε
]
, (A.3)

ψ12(θ, ε) , Er|θ,ε [−∆ε
θ log p(r|θ, ε)|ε] , (A.4)

ψ21(θ, ε) , Er|θ,ε
[
−∆θ

ε log p(r|θ, ε)|ε
]
, (A.5)

ψ22(θ, ε) , Er|θ,ε [−∆ε
ε log p(r|θ, ε)|ε] . (A.6)

1) Computation of ΞD1 , Eθ[Ψ11(θ, ε)]: To compute the
log-likelihood function in (A.3), p(r|θ, ε) is given by

p(r|θ, ε) = C exp
[
−1

σ2
w

(r− µ(ε))H(r− µ(ε))

]
, (A.7)

where C , (πσ2
w)−N and given θ and ε, r is a complex

Gaussian vector with mean vector µ(ε) = EPFHHd and
covariance matrix σ2

wIN . Based on (A.7), it follows that:



−∆θ
θ log p(r|θ, ε) =

1

σ2
w

(
−rH∆θ

θ(µ(ε))−∆θ
θ(µH(ε))r

+ ∆θ
θ(µH(ε)µ(ε))

)
. (A.8)

The expected value of (A.8) with respect to r is given by

Er|θ,ε[−∆θ
θ log p(r|θ, ε)] =

1

σ2
w

(
−µH(ε)∆θ

θ(µ(ε))

−∆θ
θ(µH(ε))µ(ε) + ∆θ

θ(µH(ε)µ(ε))
)
. (A.9)

Using ∆θ
θ(µ

H(ε)µ(ε)) = ∆θ
θ(µ

H(ε))µ(ε) +
µ(ε)∆θ

θ(µ
H(ε)) + 2∇θ(µ(ε))∇θ(µ(ε)), ΞD1 is found

to be an N ×N diagonal matrix, such that

[ΞD1]n,n =
2

σ2
w

dHHHFUnFHHd. (A.10)

where Un , diag([01×(n−1), 1,01×(N−n)]).
2) Computation of ξD4 = Eθ[ψ22(θ, ε)], ξD3 =

Eθ[ψ21(θ, ε)] and ξD2 = Eθ[ψ12(θ, ε)]: Based on (A.7), it
follows that:
−∆ε

ε log p(r|θ, ε) =
1

σ2
w

(
− rH∆ε

ε(µ(ε))−∆ε
ε(µ

H(ε))r

+ ∆ε
ε(µ

H(ε)µ(ε))
)

(A.11)

The expected value of (A.11) with respect to r is given by
Er|θ,ε[−∆ε

ε log p(r|θ, ε)] =
1

σ2
w

(
− µH∆ε

ε(µ(ε))

−∆ε
ε(µ

H(ε))µ (A.12)

+ ∆ε
ε(µ

H(ε)µ(ε))
)
.

By following the simplification given above (A.10), we obtain

ξD4 , Eθ[Ψ22(θ, ε)] =
2

σ2
w

dHHHFMFHHd, (A.13)

where M , diag
([

(2π 0
N )2, (2π 1

N )2, . . . , (2πN−1
N )2

]T)
.

Moreover, by following similar steps as in (A.8)-(A.13), it
can be found that ξD2 , Eθ[Ψ12(θ, ε)] is an N × 1 vector
with nth element given by

[ξD2]n,1 =
2

σ2
w

[
dHHHF

√
MUnFHHd

]
, (A.14)

Finally, ξD3 can be determined as ξD3=ξTD2.

B. Computation of ΞP , Eθ|ε
[
−∆λ

λ log p(θ|ε)|ε
]

The second factor in HIM, defined in (A.1), can be written
as:

Eθ|ε
[
−∆λ

λ log p(θ|ε)|ε
]
,

[
ΞP1 ξP2

ξP3 ξP4

]
=

[
Eθ

[
−∆θ

θ log p(θ)
]

Eθ [−∆ε
θ log p(θ)]

Eθ [−∆ε
θ log p(θ)]

T Eθ [−∆ε
ε log p(θ)]

]
. (A.15)

where p(θ) is the prior distribution of θ.
1) Computation of ΞP1 , Eθ

[
−∆θ

θ log p(θ)
]
: From [17,

eq.(19)], we obtain the N ×N matrix Eθ

[
−∆θ

θ log p(θ)
]

as

ΞP1 =
−1

σ2
δ



−1 1 0 · · · 0

1 −2 1 0
...

0
. . . . . . . . . 0

... 0 1 −2 1
0 · · · 0 1 −1


(A.16)

2) Computation of ξP2 , Eθ [−∆ε
θ log p(θ)] and ξP4 ,

Eθ [−∆ε
ε log p(θ)]: Since CFO is a deterministic parameter,

we have
ξP2 =ξTP3 = 0N×1, (A.17)
ξP4 =0. (A.18)

Using the above results, we can evaluate the HIM in (5), since
B11 = ξD1 + ξP1, b12 = bT21 = ξD2 + ξP2 = ξD2, and
b22 = ξD4.

Using the HIM, the block-matrix inversion in [14] can be
used to find the inverse of the HIM or the HCRB as shown
in (6).
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