Power Control and Beamforming Design for SWIPT in AF Two-Way Relay Networks

Wei Wang†, Rui Wang‡, Hani Mehrpouyan§, and Guoan Zhang*

†Department of Communication Engineering, Nantong University, Jiangsu, China.
‡Department of Information and Communications, Tongji University, Shanghai, China.
§Department of Electrical and Computer Engineering, Boise State University, Boise, USA.

Emails: {wwang2011, gzhang}@ntu.edu.cn, ruiwang@tongji.edu.cn, hanimehrpouyan@boisestate.edu.

Abstract—In this paper, we study the problem of joint power control and beamforming design for simultaneous wireless information and power transfer (SWIPT) in an amplify-and-forward (AF) based two-way relaying (TWR) network. The considered system model consists of two source nodes and a relay node. Two single-antenna source nodes receive information and energy simultaneously via power splitting (PS) from the signals sent by a multi-antenna relay node. Our objective is to maximize the weighted sum power at the two source nodes subject to quality of service (QoS) constraints and the transmit power constraints. However, the joint optimization of the relay beamforming matrix, the source transmit power and PS ratio is intractable. To find a closed-form solution of the formulated problem, we decouple the primal problem into two subproblems. In the first problem, we intend to optimize the beamforming vectors for given transmit powers and PS ratio. In the second subproblem, we optimize the remaining parameters with obtained beamformers. It is worth noting that although the corresponding subproblem are nonconvex, the optimal solution of each subproblem can be found by using certain techniques. The iterative optimization algorithm finally converges. Simulation results verify the effectiveness of the proposed joint design.

I. INTRODUCTION

Simultaneous wireless information and power transfer (SWIPT) is a promising energy harvesting (EH) technique to prolong the operational time of energy-constrained nodes in wireless networks [1], [2]. Recently, SWIPT has been investigated for various wireless channels, e.g., the point-to-point additive white Gaussian noise (AWGN) channel [3], the frequency selective channels [4], the fading AWGN channel [5], the multiple-input-multiple-output (MIMO) channel [6], and the multiple-input-single-output (MISO) broadcast channel [7].

Besides the above studies related to one-hop transmission, the SWIPT technique has also been extended to wireless relay networks [8]–[14]. For the one-way single-antenna relay channel, two protocols, namely time switching (TS) and power splitting (PS), are proposed for amplify-and-forward (AF) relay networks in [8], [9]. Later on, SWIPT was extended to a full-duplex wireless-powered one-way relay channel in [10], [11], where the data and energy queues of the relay are updated simultaneously in every time slot. However, compared with the one-way relaying (OWR), two-way relaying (TWR) can further improve system spectral efficiency, the SWIPT protocols for TWR channel recently have attracted much attention. In [12], the authors provided a SWIPT protocol in two-way AF relaying channels, where two sources exchange information via an energy harvesting relay node. In [13], the authors investigated the sum-rate maximization problem in two-way AF relaying systems, where two source nodes harvest energy from multiple relay nodes. In [14], the authors studied the relay beamforming design problem for SWIPT in a non-regenerative two-way AF multi-antenna relay network. However, most studies on SWIPT in relay networks focused on energy-constrained relay nodes [8]–[12]. As a matter of fact, in some scenarios (such as cellular network), the terminals are often powered by the energy limited batteries. How to prolong the operational time of the terminals has become the issue with the growing of the power consumed caused by traffic increases. Therefore, EH in such kind of scenarios is also particularly important as it can provide a much more convenient solution for charging the batteries of the terminals or acting as a power source.

In this paper, similar to [13], [14], we consider a two-way AF SWIPT system with battery-limited source nodes and a relay node that acts also as a source of energy. However, the authors in [13] assumed that the source node is able to decode information and extract power simultaneously, which, as explained in [6], may not hold in practice. The authors in [14] assumed the case of separated EH and information decoding (ID) receivers, which leads to that the system has become more complicated. In this paper, thanks to the PS scheme [6], we study a TWR based PS-SWIPT system where the received signal at the source is split for ID and EH. In particular, different from [13], [14], our objective is to maximize the weighted sum power at two source nodes subject to a given minimum signal-to-interference-and-noise ratio (SINR) constraint at source nodes and a maximum transmit power constraint at each node. Since in the cellular networks, SINR is a important metric for maintaining a given throughput while maximizing energy transfer of the terminals by the relay. The latter maximizes the operational time of the terminals which can be another important metric in the scenarios. To the authors’ best knowledge, the joint beamforming, power allocation and PS optimization for this new setup has not been studied in existing works.

Under the above setup, we first propose a two-phase relaying protocol based on PS with the splitting ratio ρ. Next, for the AF relaying strategy, we formulate the joint optimization as a nonconvex quadratically constrained problem. For the nonconvex optimization problem, we find a solution by decoupling the primal problem into two subproblems.
Then, an iterative optimization algorithm is proposed for two subproblems to jointly optimize the relay beamforming matrix, the source transmit power and PS ratio. Finally, we provide numerical results to evaluate the performance of the proposed joint optimal design.

Notations: Boldface lowercase and uppercase letters denote vectors and matrices, respectively. For a square matrix A, A^T, A^*, A^H, $\text{Tr}(A)$, $\text{Rank}(A)$ and $||A||$ denote its transpose, conjugate, conjugate transpose, trace, rank, and Frobenius norm, respectively. $A \succeq 0$ indicates that A is a positive semidefinite matrix. $\text{vec}(A)$ denotes the vectorization operation by stacking the columns of A into a single vector a. $E(\cdot)$ denotes the statistical expectation. 0 and I denote the zero and identity matrix, respectively. The distribution of a circular symmetric complex Gaussian vector with mean vector μ and covariance matrix Σ is denoted by $CN(\mu, \Sigma)$. $C^{x \times y}$ denotes the $x \times y$ domain of complex matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a half-duplex TWR system where two single-antenna source nodes S_1 and S_2 exchange information with each other through an N-antenna relay node, R. Specifically, the two source nodes are powered by the energy limited batteries, i.e., the sources themselves have initial powers to support their circuitry energy consumption and need to replenish their energy by wireless power transfer from the relay, as shown in Fig. 1. The channel vectors from S_1 and S_2 to the relay are denoted by h_1 and h_2, respectively, and the channel vectors from the relay to S_1 and S_2 are denoted by g_1 and g_2, respectively. To further improve the spectral efficiency, the two-phase PS-based protocol is used to realize bidirectional communication. Note that here, by assuming a PS ratio, ρ, the transmit signal from the relay is used to simultaneously achieve information and power transfer. For simplicity, we assume that two source nodes cannot communicate with each other directly due to large path loss or heavy shadowing. It is assumed that each node has perfect full CSIT. In addition, we also assume that all the channels are block-fading, i.e., the channels remain constant during each transmission slot, but change from one slot to another. Based on the above system setup, the received signal at the relay after the first phase, i.e., the multiple access (MAC) phase, is given by

$$y_R = h_1 x_1 + h_2 x_2 + n_R,$$ \hspace{1cm} (1)

where x_i, for $i \in \{1, 2\}$, represents the transmit signal from node S_i with $\mathbb{E}(||x_i||^2) = P_i$, respectively, and n_R denotes the additive complex Gaussian noise vector at the relay following $CN(0, \sigma^2_R I_N)$. Upon receiving y_R, the relay node performs the amplified processing and then forwards its signal to the source nodes in the second phase, also referred as broadcast (BC) phase. Let the transmit signal from the relay be denoted by

$$x_R = \text{Wh}_1 x_1 + \text{Wh}_2 x_2 + \text{Wn}_R + x,$$ \hspace{1cm} (2)

where W represents the precoding matrix used at the relay. Note that, here, we include a new signal x, which provides us with more degrees of freedom to optimize power transfer from relay to the source nodes [15]. In addition, we assume that the relay node has the maximum transmit power P_r, i.e., $\text{Tr}\{E(x_R x_R^H)\} \leq P_r$, which is equivalent to

$$P_1 ||\text{Wh}_1||_F^2 + P_2 ||\text{Wh}_2||_F^2 + \text{Tr}(Q_x) + \sigma^2 ||\text{W}||_F^2 \leq P_r,$$ \hspace{1cm} (3)

where $Q_x = E(xx^H)$ is the covariance matrix of x. Then, the radio-frequency (RF) signals, \tilde{y}_i, received at the two nodes in the second $T/2$ time interval are given by

$$\tilde{y}_i = g_i^T \text{Wh}_i \tilde{x}_i + g_i^T x + g_i^T \text{Wn}_R + n_{i,d},$$ \hspace{1cm} (4)

where $\tilde{y}_i = E(\tilde{y}_i)$ is the receiver of the two nodes in two different powers for ID and EH. Let $\rho \in (0, 1)$ be the power splitting ratio, meaning that $\sqrt{1-\rho}$ is used for ID. As a result, after converting the received signal to baseband and performing self-interference cancelation, the obtained signal is denoted as

$$y_i = \sqrt{1-\rho}(g_i^T \text{Wh}_i x + x) + g_i^T \text{Wn}_R + n_{i,c},$$ \hspace{1cm} (5)

where $n_{i,c} \sim CN(0, \sigma^2_{i,c})$ is the additive Gaussian noise introduced by the signal conversion from RF band to baseband. Accordingly, the SINR at the node S_i is given by

$$\text{SINR}_i = \frac{P_i ||g_i^T \text{Wh}_i||^2_2}{g_i^T Q_x g_i^* + \sigma^2_i ||g_i^T \text{W}||_F^2 + \sigma^2_{i,c} + \sigma^2_R \rho^2 \frac{1}{1-\rho}}.$$ \hspace{1cm} (6)

Moreover, the other portion of the received signal, $\sqrt{\rho} y_i$, is used for EH. Since the background noise at the EH receiver is negligible and thus can be ignored [6], the harvested energy, E_i, during EH time $T/2$ is given by

$$E_i = \frac{\eta T}{2} \rho (||g_i^T \text{Wh}_i||_F^2 P_i + ||g_i^T \text{Wh}_1||_F^2 P_1 + g_i^T Q_x g_i^*),$$ \hspace{1cm} (7)

where η is the energy conversion efficiency with $0 < \eta < 1$ which depends on the rectification process and the EH circuitry [6]. Note that in (7), the self-interference can be used for EH, which is different from ID.

Our design goal is to maximize the weighted sum power at two EH nodes, which is defined as the harvested energy
minus the consumed energy. The corresponding optimization problem can be formulated as
\[
\max_{P_1, P_2, \rho, W, Q_x \succeq 0} \alpha(E_1 - \frac{P_1 T}{2}) + \beta(E_2 - \frac{P_2 T}{2})
\]
subject to
\[
\begin{align*}
\sinr_i \geq \tau_i, & \quad i = 1, 2, \\
P_i \leq P_{\max,i}, & \quad i = 1, 2, \\
\text{Tr}(\mathbb{E}(x_i x_i^H)) \leq P_r.
\end{align*}
\] (8)

In (8), \(\alpha\) and \(\beta\) correspond to the given energy weights for the two EH receivers \(S_1\) and \(S_2\), respectively, where a larger weight value indicates a higher priority of transferring energy to the corresponding EH receiver as compared to other EH receiver. \(\tau_i\) and \(P_{\max,i}\) are the minimum SINR requirement and the maximum transmit power at node \(S_i\), respectively.

III. Iterative Optimization Algorithm

This section proposes an iterative algorithm to solve the joint optimization problem (8). Our idea is to optimize a portion of variables when the others are fixed and then search all the potential results to produce the optimal solution [16], [17]. More specifically, in the first step, we try to find the solutions of \(W\) and \(Q_x\) for fixed \(P_1\), \(P_2\) and \(\rho\) values. In the second step, we update the values of \(P_1\), \(P_2\) and \(\rho\) by fixing the remaining parameters. Finally, we show the iterative optimization algorithm can converge.

1) Optimize \(W\) and \(Q_x\) for fixed \(P_1\), \(P_2\) and \(\rho\): Note that when fixing \(P_1\), \(P_2\) and \(\rho\), the problem of optimizing variables \(W\) and \(Q_x\) is equivalent to
\[
\max_{Q_x \succeq 0} \alpha \rho |(g_1^T \text{Wh}_2|P_1 + |g_1^T Q_x g_1^\ast|^2) + \beta |(g_2^T \text{Wh}_2|P_1 + |g_2^T Q_x g_2^\ast|^2)
\]
subject to
\[
\begin{align*}
\sinr_i \geq \tau_i, & \quad i = 1, 2, \\
P_1|\text{Wh}_1|^2 + P_2|\text{Wh}_2|^2 + \text{Tr}(Q_x) + \sigma_i^2 |W|^2 & \leq P_r.
\end{align*}
\] (9)

To find the optimal solution of problem (9), we define a new variable \(w = \text{vec}(W)\); then the 10 identity
\[
\text{Tr}(ABCD) = (\text{vec}(D^T))^T(C^T \otimes A)\text{vec}(B).
\] (10)

As a result, we have \(|g_1^T \text{Wh}_1|^2 = \text{Tr}((h_1 h_1^T \otimes g_1^T \text{ww}^H)\text{ww}^H)\) and \(|\text{Wh}_1|^2 = \text{Tr}((h_1 h_1^T \otimes I)\text{ww}^H)\). Then, let \(W \equiv \text{ww}^H\), (9) can be rewritten as
\[
\max_{W \succeq 0, Q_x \succeq 0} \text{Tr}(A_1 \tilde{W}) + \text{Tr}(B_1 Q_x)
\]
subject to
\[
\begin{align*}
\text{Tr}(C_1 \tilde{W}) - \text{Tr}(\tau_i g_i^* g_i^\ast Q_x) & \geq D_i, \quad i = 1, 2, \\
\text{Tr}(E_1 \tilde{W}) + \text{Tr}(Q_x) & \leq P_r, \\
\text{Rank}(\tilde{W}) & = 1.
\end{align*}
\] (11)

where \(A_1 \triangleq \frac{\alpha P_1 h_1 h_1^T + P_1 h_1 h_1^T \otimes (\alpha g_1^T Q_x + \beta g_2^T g_2^\ast)}{2}, \quad B_1 \triangleq \frac{\beta P_2 h_2 h_2^T + P_2 h_2 h_2^T \otimes (\alpha g_1^T Q_x + \beta g_2^T g_2^\ast)}{2}, \quad C_1 \triangleq \frac{P_1 h_1 h_1^T - \tau_i g_i^* g_i^\ast}{2} \otimes g_i^* g_i^\ast, \quad D_1 \triangleq \frac{\alpha^2 \tau_i^2 + \frac{\alpha^2 \tau_i^2}{2}}{2}, \quad E_1 \triangleq \frac{P_1 h_1 h_1^T + P_2 h_2 h_2^T + \sigma_i^2 I}{2} \otimes I. \quad \text{Due to the rank-one constraint, finding the optimal solution of (11) is difficult.}

Therefore, we drop the rank-one constraint to construct a semidefinite programming (SDP) problem as follows
\[
\max_{W \succeq 0, Q_x \succeq 0} \text{Tr}(A_1 \tilde{W}) + \text{Tr}(B_1 Q_x)
\]
subject to
\[
\begin{align*}
\text{Tr}(C_1 \tilde{W}) - \text{Tr}(\tau_i g_i^* g_i^\ast Q_x) & \geq D_i, \quad i = 1, 2, \\
\text{Tr}(E_1 \tilde{W}) + \text{Tr}(Q_x) & \leq P_r.
\end{align*}
\] (12)

Problem (12) is convex and can be solved by CVX [18]. However, the problem in (12) is equivalent to the problem in (11) only when the problem in (12) has a rank-one optimal solution of \(W\). Consequently, we have the following lemma.

Lemma 1: The rank-one optimal solution of the problem in (12) always exists.

Proof: The proof is based on [19] and is omitted due to space limitation.

By acquiring the optimal rank-one solution of (12), we can further get the optimal solution of (9).

2) Optimize \(P_1\), \(P_2\) and \(\rho\) for fixed \(W\) and \(Q_x\): In the second step, we need to optimize the power \(P_1\), \(P_2\) and the power ratio \(\rho\) with the remaining variables fixed. The corresponding optimization problem can be formulated as
\[
\max_{P_1, P_2, \rho} \alpha(E_1 - \frac{P_1 T}{2}) + \beta(E_2 - \frac{P_2 T}{2})
\]
subject to
\[
\begin{align*}
\sinr_i \geq \tau_i, & \quad i = 1, 2, \\
P_1|\text{Wh}_1|^2 + P_2|\text{Wh}_2|^2 + \text{Tr}(Q_x) + \sigma_i^2 |W|^2 & \leq P_r, \\
0 & < P_i \leq P_{\max,i}, \quad i = 1, 2, \\
0 & < \rho < 1.
\end{align*}
\] (13)

Similar to problem (9), we apply the above transformations in (13). As a result, the problem of optimizing the variables \(P_1\), \(P_2\) and \(\rho\) is equivalent to
\[
\max_{P_1, P_2, \rho} A_2 \rho P_2 + B_2 \rho P_1 - \alpha P_1 - \beta P_2 + C_2 \rho
\]
subject to
\[
\begin{align*}
(\text{E}_2 \text{P}_2 - \text{D}_2)(1 - \rho) & \geq \tau_i \sigma_i^2, \\
(G_2 \text{P}_1 - \text{F}_2)(1 - \rho) & \geq \tau_i \sigma_i^2, \\
P_1 J_2 + P_2 K_2 & \leq P_r - L_2, \\
0 & < P_1 \leq P_{\max,1}, \\
0 & < P_2 \leq P_{\max,2}, \\
0 & < \rho < 1.
\end{align*}
\] (14)

Here, \(A_2 \triangleq \frac{\alpha \tau_i}{2} |g_1^T \text{Wh}_1|^2 + \frac{\beta \tau_i}{2} |g_2^T \text{Wh}_2|^2, \quad B_2 \triangleq \frac{\alpha \tau_i}{2} |g_1^T \text{Wh}_1|^2 + \frac{\beta \tau_i}{2} |g_2^T \text{Wh}_2|^2, \quad C_2 \triangleq \frac{\alpha \tau_i}{2} |g_1^T Q_x g_1^\ast|^2 + \frac{\beta \tau_i}{2} |g_2^T Q_x g_2^\ast|^2, \quad D_2 \triangleq (g_1^T Q_x g_1^\ast + \sigma_i^2 |g_1^T \text{Wh}_1|^2 + \sigma_i^2 |g_1^T Q_x g_1^\ast|^2) \tau_i, \quad E_2 \triangleq |g_1^T \text{Wh}_1|^2, \quad F_2 \triangleq (g_2^T Q_x g_2^\ast + \sigma_i^2 |g_2^T \text{Wh}_2|^2 + \sigma_i^2 |g_2^T Q_x g_2^\ast|^2) \tau_i, \quad G_2 \triangleq |g_1^T \text{Wh}_1|^2, \quad J_2 \triangleq |\text{Wh}_1|^2, \quad K_2 \triangleq |\text{Wh}_2|^2.

Since the optimization variables \(P_1\), \(P_2\) and \(\rho\) are coupled in (14b), (14c) and (14d), problem (14) is still intractable. To find the optimal solution of (14), we give the following lemma.
LEMMA 2. Let \(\{P_1^*, P_2^*, \rho^*\} \) denote an optimal solution of problem (14), we have: (1) for the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \), there are at least two constraints of problem (14) are achieved with equality; (2) the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) can be obtained in closed-form by comparing the following eight cases:

- When the two SINR constraints (14b) and (14c) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{\tau_2 \sigma^2_{1,c}}{1-\rho^*} + \frac{F_2}{G_2}, \quad P_2^* = \frac{\tau_1 \sigma^2_{1,c}}{1-\rho^*} + \frac{D_2}{E_2}, \quad \rho^* = 1 - \frac{a_1 + a_2 - a_3}{a_1},
 \]
 where \(a_1 \triangleq -(A_2 D_2 G_2 + B_2 E_2 F_2 + C_2 E_2 G_2), \)
 \(a_2 \triangleq A_2 E_2 \tau_1 \sigma^2_{1,c} + B_2 E_2 \tau_2 \sigma^2_{2,c} + A_2 D_2 G_2 \)
 and \(a_3 \triangleq \alpha E_2 \tau_2 \sigma^2_{2,c} + \beta G_2 \tau_1 \sigma^2_{1,c} \).

- When the constraints (14b) and (14d) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{P_r - L_2 - P_2^* K_2}{J_2}, \quad P_2^* = \frac{\tau_1 \sigma^2_{1,c}}{1-\rho^*} + \frac{D_2}{E_2}, \quad \rho^* = 1 - \frac{b_1 + b_2}{b_1 J_2 E_2 b_3}
 \]
 where \(b_1 \triangleq (A_2 J_2 - B_2 K_2) \tau_1 \sigma^2_{1,c} \)
 and \(b_2 \triangleq (P_r E_2 - L_2 E_2 - D_2 K_2) \beta \tau_1 \sigma^2_{1,c} \) and \(b_3 \triangleq \frac{\alpha A_2 D_2 + B_2 E_2 F_2 + C_2 E_2 G_2}{E_2} \).

- When the constraints (14b) and (14e) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{\tau_2 \sigma^2_{2,c}}{1-\rho^*} + \frac{F_2}{G_2}, \quad P_2^* = \frac{P_r - L_2 - P_1^* J_2}{K_2}, \quad \rho^* = 1 - \frac{d_1 + d_2}{K_2 G_2 d_3},
 \]
 where \(d_1 \triangleq (B_2 K_2 - A_2 J_2) \tau_2 \sigma^2_{2,c} \)
 and \(d_2 \triangleq (P_r G_2 - L_2 G_2 - F_2 J_2) \alpha \tau_2 \sigma^2_{2,c} \) and \(d_3 \triangleq \frac{A_2 D_2 + B_2 E_2 F_2 + C_2 E_2 G_2}{K_2} \).

- When the constraints (14c) and (14d) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{\tau_2 \sigma^2_{2,c}}{1-\rho^*} + \frac{F_2}{G_2}, \quad P_2^* = \frac{P_{\text{max},2}}{P_r - L_2 - P_2^* K_2}, \quad \rho^* = 1 - \frac{e_1 - e_2}{G_2 e_3},
 \]
 where \(e_1 \triangleq B_2 \tau_2 \sigma^2_{2,c}, \quad e_2 \triangleq \alpha \tau_2 \sigma^2_{2,c} \) and \(e_3 \triangleq \frac{B_2 F_2 + A_2 G_2 P_{\text{max},2} + C_2 G_2}{G_2} \).

- When the two transmit power constraints (14d) and (14e) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{P_{\text{max},1}}{P_r - L_2 - J_2 P_{\text{max},1}}, \quad P_2^* = \frac{\tau_1 \sigma^2_{1,c}}{1-\rho^*} + \frac{D_2}{E_2}, \quad \rho^* = \min\{1 - \frac{\tau_1 \sigma^2_{1,c}}{E_2 P_2^* - D_2}, 1 - \frac{\tau_2 \sigma^2_{2,c}}{G_2 P_1^* - F_2}\},
 \]
 where \(\alpha \leq \beta \).

- When the constraints (14d) and (14f) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{P_r - L_2 - K_2 P_{\text{max},2}}{J_2}, \quad P_2^* = \frac{\tau_1 \sigma^2_{1,c}}{1-\rho^*} + \frac{D_2}{E_2}, \quad \rho^* = \min\{1 - \frac{\tau_1 \sigma^2_{1,c}}{E_2 P_2^* - D_2}, 1 - \frac{\tau_2 \sigma^2_{2,c}}{G_2 P_1^* - F_2}\},
 \]
 where \(\alpha \leq \beta \).

- When the constraints (14e) and (14f) hold with equality, the optimal solution \(\{P_1^*, P_2^*, \rho^*\} \) are given by
 \[
 P_1^* = \frac{P_{\text{max},1}}{P_r - L_2 - K_2 P_{\text{max},2}}, \quad P_2^* = \frac{\tau_1 \sigma^2_{1,c}}{1-\rho^*} + \frac{D_2}{E_2}, \quad \rho^* = \min\{1 - \frac{\tau_1 \sigma^2_{1,c}}{E_2 P_2^* - D_2}, 1 - \frac{\tau_2 \sigma^2_{2,c}}{G_2 P_1^* - F_2}\},
 \]
 where \(\alpha \leq \beta \).

Proof: Due to space limitation, please refer to [20] for the omitted proof of this lemma.

We compare all objective function values by substituting (15)~(22) into (14a) and select one \(\{P_1^*, P_2^*, \rho^*\} \) as the optimal solution, if they lead to the greatest value of the objective function \(f(\rho^*) \).

3) Convergence of the Iterative Algorithm

By combining the solution processes in steps 1) and 2), the optimal design for AF strategy can be achieved. For clarity, the detailed procedure of the iterative optimization algorithm is listed in Table I.

LEMMA 3. The proposed iterative algorithm listed in Table I converges.

Proof: Since the optimal closed-form solutions \(\{W, Q_x\} \) and \(\{P_1, P_2, \rho\} \) can be obtained separately by steps 4 and 5 in Table I at each iteration, i.e., maximizing the objective function of problem (8), the algorithm in Table I leads to the fact that the weighted sum power \(E^I \) is monotonically nondecreasing in the iterating process. Additionally, the constraints of problem (8) are bounded. Hence, the objective function of problem (8) is bounded as well. Therefore, we conclude that the iterative optimization algorithm converges based on the monotonicity and boundedness guarantee [17], [21].

IV. SIMULATION RESULTS

In this section, we numerically evaluate the performance of the proposed energy harvesting scheme. The channel vector \(h_i \) and \(g_i \) are set to be Rayleigh fading. The channel gain is modeled by the distance path loss model [15], given as \(g_{i,j} = c \cdot d_{i,j}^{-n} \), where \(c \) is an attenuation constant set as 1, n
is the path loss exponent and fixed at 3, and $d_{i,j}$ denotes the distance between nodes i and j. For simplicity, we assume that the noise power at all the destinations are the same, i.e., $\sigma_{i,c}^2 = \sigma_{i,d}^2 = \sigma_{j}^2 = \sigma_j^2 = 1$ W, $\forall i$, and $\eta = 50\%$, $T = 1$ s. Moreover, the maximum transmit powers at the two sources, if not specified, are set as $P_{\text{max,1}} = P_{\text{max,2}} = P_{\text{max}} = 1.25$ W. In all simulations, the weighted sum power of the relay network is computed by using 1000 randomly generated channel realizations.

In Fig. 2, we first present the harvested energy for AF relaying strategy at different distance of two sources when the relay node is equipped with $N = 4$ transmit antennas. From simulation results, illustrated in Fig. 2(a), when the distances of the two source nodes are symmetric, we find that if S_1 and S_2 have the same priority, i.e., $\alpha = \beta = 0.5$, the two nodes can achieve a fair energy efficiency. When S_1 and S_2 have different priorities, i.e., $\alpha = 0.8$ and $\beta = 0.2$, node S_1 can harvest more energy since its energy weight factor is set to a larger value. However, it is noted that in asymmetric scenario, in Fig. 2(b), although two source nodes S_1 and S_2 have same priority, the node S_2 still harvests much lower energy. The main reason is that the location of S_2 is far away from the relay node R, which could result in very small channel gain as compared to the near node. This coupled effect is referred to as the doubly-near-far problem [2]. However, when with higher priority, i.e., $\beta = 0.9$, we find that node S_2 can share more energy for the harvested total energy, which can provide an effective solution to the doubly-near-far problem.

Secondly, in Fig. 3, we compare the proposed joint optimization scheme with the other two schemes, i.e., only precoding scheme and only power allocation scheme. From simulation results, we find that the joint optimization scheme achieves the best performance as it uses the degrees of the freedom of both power, PS ratio allocation and precoding. It is worth noting that when the relay transmit power is low, the proposed joint optimization scheme achieves lower the harvested energy than the only power allocation scheme then outperforms the latter as P_t increases. This is because the joint optimization scheme can always use the maximum available relay transmit power to improve the total harvested energy.

Finally, in Figs. 4 and 5, we illustrate the harvested energy for different sources transmit power and the number of antennas at relay. From Fig. 4, we find that the performance of the proposed scheme with $P_{\text{max,1}} = P_{\text{max,2}} = 2$ W is not outperforms the case with $P_{\text{max,1}} = P_{\text{max,2}} = 1.25$ W. The main reason is that unlike the relay, two sources need to adjust its transmit power rather than using full power. From Fig. 5,
Numerical results verified the effectiveness of the proposed strategy, the design problem is formulated as nonconvex quadratically constrained problem, which is decoupled into two subproblems that can be solved separately by applying large or even massive antenna arrays for efficiently implementing TWR SWIPT systems in practice.

V. CONCLUSIONS

This paper has studied the joint beamforming and PS design problem for SWIPT in AF-based TWR network. The weighted sum power at two source nodes was maximized subject to given SINR constraints at source nodes and transmitted power constraints at relay node. Considering the AF relaying strategy, the design problem is formulated as nonconvex quadratically constrained problem, which is decoupled into two subproblems that can be solved separately by applying suitable optimization tools. The performance was compared and some practical implementation issues were discussed. Numerical results verified the effectiveness of the proposed jointly designs.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China under grant BK20130393, the Project of Flagship-Major Construction of Jiangsu Higher Education Institutions of China under grant 06150032/002 and NASA Early Investigation Grant.

REFERENCES