

An LDPC Decoder

HANI Mehrpouyan

1. syndrom.m Here is the Parity Check Matrix

Hb=[1 1 0 1 0 0 0 1 0 0 0 0 0 0 0;
 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0;
 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0;
 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0;
 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0;
 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0;
 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0;
 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1];

2. The function tanner_gen.m, decoder_spa.m, and BER_FER.m are used for this
section
here is the graph

3. tanner_gen_LDPC.m, decoder_spa_LDPC.m, BER_FER_LDPC.m are used in this
section.
Here is the resulting Graph

4. here is the resulting picture. To run the whole program use main.m please, it will
take a while for the program but the progress is indicated.

a. As expected as the number of iterations is increased the decoding error

decreases. This is the due to the fact that more messages are past back and
forth, on the other hand it seems like 10 iterations is almost enough since the
gain between 5 to 10 iterations is very small.

b. Similar results are observed in the case of the LDPC code.
c. It is interesting to note that the BER curve for the LDPC code performs

considerably better in the case of one iteration compared to the BCH code
when BP is applied. It is also interesting to note that the overall performance
of the LDPC version of the code is almost .3 dB better than the starting BCH
code. Thus by adding some redundancy to the parity check of the starting code
and modifying the tanner graph we were able to improve the performance of
the code and also reduce the number of iterations to achieve the same
performance (1iteration version of the LDPC code performs almost as good as
the 5 or 10 iteration versions of the BCH code.

