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Abstract

This correspondence represents two new soft decision decoding algorithms that promise to reduce

complexity and at the same time achieve the maximum likelihood decoding (MLD) performance. The

first method is an Adaptive Two-Stage Maximum Likelihood Decoder [1] that first estimates a minimum

sufficient set and performs decoding within the smaller set to reduce complexity and at the same time

achieves MLD performance. The second scheme is an Iterative Reliability based decoder [2] that takes

advantage of Adaptive Belief Propagation (ABP) [5] to update the reliabilities and then performs Order

Statistics Decoding (OSD) or Box and Match Algorithm (BMA) to the new log likelihood ratios (LLRs).

The updated reliability values reduce the number of errors in the most reliable positions (MPRs) therefore

allowing for a smaller OSD or BMA to be used in the next step of decoding, thus reducing complexity

and at the same time achieving close to MLD performance.
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I. Introduction

Hard-decision decoding has been deployed extensively in communication systems due

to its simplicity. However the surge in processing power has renewed interest in soft-

decision decoding algorithms that provide considerable performance enhancement over

their counterparts.

Soft-decision Maximum Likelihood Decoding (MLD) algorithms provide performance

gains at the cost of significant increase in complexity. The adaptive decoding algorithms

provided in [1] and [2] claim to reduce complexity significantly and at the same time achieve

the optimal performance of MLD. Reliability based algorithms [2] order the received sym-

bols in blocks based on the assigned reliability values, dividing the code into reliable and

unreliable sections, and therefore they reduce the number of computations required for

MLD. The alternative approach proposed in [1] applies a two-stage (TS) coding structure,

that first estimates a minimum sufficient set (MSS) of candidate codewords containing the

optimal codeword and secondly performs optimal decoding within this smaller set. How-

ever it is important to note that both schemes suffer from exponential complexity under

the worst case scenario.

II. Back Ground Information

A. OSD [9] reduces cost of MLD decoding at the expense of performance. The received

sequence r is reordered based on the reliability values from the most reliable to the least

reliable one. Because the first k symbols of y are the k most reliable independent symbols

their hard decision should contain very few errors. Based on this concept, the algorithm

generates a sequence of candidate codewords for testing by processing the k most reli-

able independent symbols of y. The candidate codeword v∗ with the least correlation

discrepancy with y is the decoded codeword.

For 0 ≤ i ≤ k, the OSD algorithm of order-i makes all possible changes to the l of the

k most reliable binary digits for 0 ≤ l ≤ i. Thus an OSD of order-i consists of (i + 1)

processing phases and requires a total of
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1

)
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candidate codewords to make a decoding decision. The OSD-k is MLD, and requires

2k operations for decoding. However i = bdmin/4c is practically sufficient to achieve the

same error performance as MLD for bit error rates (BER) larger than 10−6 [6].

B. In 1972 Chase devised three algorithms for decoding binary block codes [12]. Chase

II and Chase III are the two schemes of interest in this paper and will be discussed very

briefly here. In Chase III an error correcting algebraic decoder is used to generate a

list of bdmin/2 + 1c candidate codewords from the least reliable positions (LRP). MLD

decoding is performed on candidate codewords to determine the received codeword with

the least discrepancy. On the other hand Chase II creates a set of candidate codewords by

modifying the bdmin/2c LRPs. Therefore resulting in a larger set of codewords and higher

complexity. In fact the complexity of Chase II grows exponentially with dmin [6]. Clearly

Chase II’s performance is closer to MLD compared to Chase III.

C. Adaptive Belief Propagation (ABP)

Graphs of many traditional good codes such as the Reed-Solomon codes and BCH codes

contains many short cycles thus making the above codes unsuitable for Belief Propagation

BP. However in [10] a new adaptive scheme has been proposed where the graph of the

code is iteratively updated to make it suitable for BP. For example upon receiving C =

{c1, c2, ..., cn} the log likelihood ratios, (LLRs) L= {L1, L2, ..., Ln} are put into ascending

order with {i1, i2, ..., in} representing the bits corresponding to the sorted LLRs. Therefore,

the ith1 bit is the least reliable (LR) and ithN bit is the most reliable. We first reduce the

ith1 column of the parity check matrix of the code, H to the form [100...0]T by performing

row operations. Then we proceed further and attempt to reduce the ith2 column to the

form [0100...0]T . If this is not possible, we continue down the list and try to reduce the

ith3 column to the form [010...0]T . Thus we proceed down the list i1, i2, ..., iN and reduce

columns to be of weight one. Since H is of full-rank, it is possible to reduce exactly

(N −K) columns to be of weight 1, though these (N −K) may not be the LR bits. This

construction increases the likelihood that bits in error are moved to leaves on the graph.

In other words, it decreases the probability that a bit in error participates in any loops.

Thus error propagation is limited. Further the bit on the leaf receives extrinsic information

from one check node only. Finally when the algorithm has stopped we will have a matrix
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of the form:

Fig. 1. H after performing BP [11]

[10] & [11] provide a fairly detailed explanation of the ABP scheme.

D. Iterative Box Match Decoding (BMA)

BMA [13] is quite similar to the OSD algorithm described above. BMA of order-i has

a performance similar to OSD of order-i. In addition to considering the codewords with

i error patterns on the most reliable basis (MRB), BMA also considers error patterns of

hamming weight 2i in the set of MRPs S. The algorithm is referred to as BMA(i, S − k)

and the (S − k) values outside the MRB as the control band (CB). Therefore the average

list size of BMA is:

(
k

i

)
+ 2−(S−k)

(
S

2i

)
(2)

A more detailed explanation of the BMA algorithm including performance analysis of

BMA can be found in [13] & [14].

III. Two Stage Maximum-Likelihood Decoding Proposed in [1]

A. System structure

The TS decoder first estimates the MSS and then performs ordered algebraic decoding

(OAD) within the MSS. The overall structure takes r the received vector, log likelihood

vector L calculated based on 3, and the hard limited vector as inputs. Figure 2b illustrates

the overall structure of the proposed block decoder for an [N, K] code.

αi = log
Pr(ri|ci = 1)

Pr(ri|ci = 0)
=

2

σ2
.ri, i = 1, ..., N (3)



5

The LLR vector L is ordered from the least reliable to the most reliable values with

vector α recording the position that each reliability value corresponds to in r.

Fig. 2. Illustrating the decoding algorithm proposed in [1]

B. Adaptive TS Decoder

Figure 2 illustrates the advantage of the TS algorithm to conventional MLD. The ML

decoder searches through all the available codewords to find the optimal one (≤ O(2K)),

however by estimating the MSS the TS method needs to only search through the smaller

set, thus drastically reducing complexity. Further complexity reduction is achieved us-

ing Optimum Test Criterias (OTCs) [8] to terminate the search whenever the optimal

codeword is found. Therefore the resulting complexity of the TS algorithm is less than

≤ O(2m), where m is the size of the MSS.

C. Theoretical MSS and MSS Estimation

The MSS is an important part of complexity reduction proposed both in [1] & [4]. As

mentioned in the previous section decoding complexity is upper bounded by the size of

MSS, thus the theoretical average of m, M̄ , directly affects the decoding complexity and
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is of importance. Let Em be the set of all vectors generated by applying all possible errors

to the first m most unreliable positions of y and let Sm be the set of decoded codewords

corresponding to Em. Then for some m the set Sm contains the optimal codeword copt.

The MSS is the smallest such set containing copt. According to proposition 1 of [1], (refer

to the paper for the proof) MSS is the set Sm in which one error happens at position

αm and there are exactly τ errors outside the first M least reliable positions, where τ is

the error correcting capability of code C. Treating M as a random variable subject to the

noise effect, we denote Φ(M) as the probability of SM being the MSS for a given M , and

Φ(M, e) as the joint probability associated with the events when SM is the MSS and there

are exactly a total number of e errors. It follows immediately that M̄ =
∑N

M=1 M.Φ(M)

and Φ(M) =
∑N

e=0 Φ(M, e). When e ≤ τ , the hard-decision vector y can be directly

mapped to the optimal codeword, resulting in M = 0. For M 6= 0, Φ(M) reduces to τ

Φ(M) =
∑N

e=τ+1 Φ(M, e).

Lemma 2 of [8] is used for estimating the MSS. The MSS is estimated based on the idea

that some certain codewords within the set of all possible codewords do not meet certain

optimality conditions, therefore they cannot be the optimal codeword. Thus the MSS can

be estimated by identifying these codewords and removing them from the set of candidate

codewords for decoding.

The input sequence to the estimator consists of the hard decision sequence y and an

error sequence e= (e1, e2, ...en). The set of error sequence that is enough to perform MLD

is of interest here and will be discussed. Let Cx, be the set of codewords which are more

likely than x = (x1, x2, ...xn) ∈ C, where x is generated by the encoder. Then Cx, is

enough to perform MLD, however, we cannot generate Cx, exactly without referring to

all codewords. Thus we define, instead, the set of codewords Li, as follows: We select all

sequences as the estimated error sequences es which have any combination of ls, which

are located in the i positions with the lowest value of |αi|. Then , define a set Li, to be

the set of codewords that are outputs of the algebraic decoder when y + e are inputs. To

generate Li the error sequence is estimated and then provided as an input to the algebraic

decoder, therefore:
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L0 ⊆ L1... ⊆ LN (4)

where LN represents the set of all possible codewords. Then lemma 2 of [8] states:

l(x, y) <

d−bm0+m
2

c−τ−1∑
i=1

|α
s
(i)
x
|+

τ+1∑
i=1

|αuj+i , (5)

then Cx ⊆ Lj. Sx is the set of xis that have the same values as yi ∈y (if xi = yi then

xi ∈ Sx). This powerful result ensures that the most optimum codeword belongs to Lj

as long as condition 5 is satisfied and thus the search for the optimum codeword becomes

O(2j = m) complex where j ¿ N at high SNRs.

Fig. 3. The MSS estimator and the inputs based on [8] & [1]

Figure 3 represents the inputs to the MSS estimator. As illustrated the estimator

requires a suboptimal codeword to estimate the MSS. [?] uses a combination of OSD and

Chase II (This scheme is called complementary decoding since Chase II takes advantage

of the LRPs and OSD uses the MRPs to come up with the most optimal codeword. The

resultant codewords from the two algorithms are then compared and the codeword with

the largest correlation is chosen as xest). However as described before the complexity of
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OSD and Chase II increases exponentially with the order of the OSD and the size of dmin

respectively, therefore [1] proposes the use of OSD1 and Chase III to come up with xest.

It is important to note that the closer xest to the optimal codeword the closer the

MSSest to MSS. Therefore the method proposed in [4] will result in a better estimation of

the MSS compared to [1], on the other hand at high SNRs the difference is insignificant

and therefore the complexity gain is more advantageous. Figure 4 illustrates the size of

the estimated MSS compared to the theoretical results. It is clear that at high SNRs

all algorithm will converge in terms of performance (the method proposed in [4] is not

included in the graph but is expected to have performance similar to TS-ML scheme).
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Fig. 4. complexity of (M̄) versus SNR [1]

D. Ordered Algebraic Decoding

The second stage of decoding attempts to find the codeword with highest correlation

within the smaller MSS, passed on from the previous stage. [1] uses and orderi algebraic

decoder (OADi). The MSS is created by applying the error patterns to the M most

unreliable positions of the the hard-decision vector y. However the complexity could be

further reduced by applying the errors patterns to only the first i unreliable positions,

therefore resulting in the OADi decoder. Then among the new set the codeword that has

the minimum Euclidean distance to r is chosen as the output.

Figure 5 illustrates the structure of the orderi algebraic decoder and its relation with
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Fig. 5. OADi algorithm used in finding the optimum codeword within the MSS

the MSS estimator.
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Fig. 6. Performance comparison for BCH(31,16) [1]

The OTC for the optimal codeword [8] is built into the decoder to ensure termination

when the optimal codeword is found and the MSS is also updated whenever a more optimal

codeword has been found. Figure6 (a) compares the overall complexity of the TS with

Chase II and Kaneko [8] and figure6 (b) illustrates the performance analysis in terms of

word error rate between the different codes.
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IV. Iterative Reliability-Based Decoding Proposed in [2]

The iterative scheme proposed consists of two different decoding approaches. The first

method combines ABP and OSD to determine the optimal codeword, on the other hand the

second algorithm takes advantage of ABP, BMA, and iterative information set reduction

(IISR) [13] for determining the optimum codeword. Figure 7 Illustrates the approach of

both schemes.

Fig. 7. OADi algorithm used in finding the optimum codeword within the MSS

A. ABP combined with OSD(1)

At every iteration of the algorithm the following steps are executed:

1. Using the log likelihood ratios (LLRs) a new MRB is generated. OSD(1) is performed

to come up with the optimum codeword within the MRB and OTCs are used to determine

if the optimal codeword has been found.

2. If the previous step does not result in the optimal codeword, then ABP is performed

to update the LLRs and step 1 is repeated.
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B. ABP combined with BMA(1) and IISR

The proceeding algorithm is repeated in this section with BMA(1) and IISR replacing

OSD(1). IISR is very much similar to the extension provided by BMA to OSD. IISR of

BMA consists at the end of the conventional BMA of selecting the (f − S) MRPs outside

the the MRB and CB and assuming they are error free. a new MRB is constructed

with these (f − S) MRPs automatically included in it. This new BMA scheme is called

IT-BMA(i, S − k, f − S).

It is expected that second approach using the ABP-IT-BMA algorithm have a higher

complexity with respect to the ABP-OSD algorithm, on other hand performance gain is

expected using ABP-IT-BMA compared 5to ABP-OSD due to the fact that more code-

words are taken into considerations during the decoding process. The simulation result

provided by [2] support this intuition. The results are presented in figure 8 & table I.

Fig. 8. WER of ABP-OSD and ABP-IT-BMA for a (128,64) eBCH code [2]

V. Comparing the TS model with the Iterative ABP scheme

Comparing the two models proposed in section III and IV of this report is a difficult

task. Both methods attempt to reduce the complexity of MLD but the TS model reduces
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TABLE I

Number of candidates processed for the BCH(128, 64, 22) code (100 word errors

recorded) [2]

SNR 3dB

Algorithm ABP(20)-OSD(1) BMA(1) ABP(10)-IT(5,10)-BMA(1,16)

Max. for Simulations 1344 399 4314

Average 606 171 1917

complexity when achieving ML performance on the other hand the IT-ABP model only

achieves near MLD performance. It is also important to note that the overall complexity

of the IT-ABP scheme is user defined. By reducing the number of iterations and also

using a lower order OSD or BMA scheme the overall complexity of the decoder can be

considerably reduced. However the TS algorithm’s complexity is dictated by the size of

the MSS. The TS model also achieves achieve MLD performance compared to the IT-ABP

model, therefore it is expected to have a higher worst case complexity. It is important to

note that the results provided in [1] & [2] may not be compared in terms of complexity

since the two papers use two different version of the BCH code to simulate the algorithms.

VI. Summary

In this paper I provided an overview of two soft decision decoding schemes that use

suboptimal decoding tools to achieve MLD or near MLD performance at reduced com-

plexity. The worst case complexity is still exponential however using the OTCs and MSS

the overall complexity is reduced quite substantially in a majority of scenarios.
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